NASA Contractor Report 178393

IMPLEMENTING EMBEDDED ARTIFICIAL INTELLIGENCE
RULES WITHIN ALGORITHMIC PROGRAMMING LANGUAGES

(NASA-CR-178393) IMPLEMENTING EMBEDDED

ARTIFICIAL INTELLIGENCE RULES WITHIN

ALGORITHMIC PROGRAMMING LANGUAGES (VAlIR)
51 p CSCL 098B

Stefan Feyock

VAIR, INC.
Williamsburg, Virginia

Contract NAS1-18002
March 1988

| NASN
o National Aeronautics and

Space Administration

\ Langley Research Center
Hampton, Virginia 23665

N88~-21686

Unclas
G3/61 0140245

L L

IMFLEMENTING EMBEDDED ARTIFICIAL INTELLIGENCE RULES

WITHIN ALGORITHMIC FROGRAMMING LANGUAGES

Problem Description

In recent years the powerful techniques offered by Artificisl

Intelligence (Al) technology have gained acceptance at an
ever-increasing rate. On the other hand, most production
software eystems continue to be written in traditional
programming langusages which are not oriented toward Al

applications (we will refer to such languages as algorithmic
languages 1in the subsequent discussion). Attempts to close the
resulting gap have been provisional and system-specific 1in
nature. In particular, the larger commercial Al systems have the
capability to 1interact with programs written in algorithmic
languages implemented on the hosgt machine: the non-Al code is
typically invoked as subroutine or coroutine 1in these

situations. The approach taken 1in the initial phase of this

project [2) was similar. A Pascal-based Prolog interpreter [5]
wae modified by adding an escape predicate, a new built-in
predicate that allowed information to be passed to/from
algorithmic subroutines. While this solution allowed the

seamless integration of algorithmic language-based procedures

into Prolog (in particular the applications language interface

Page 1

of the RIM database system [1]), it also exposed a basic
limitation of this approach. As indicated, the structure of this
system required the AI component to operate as the mailn program.

This was appropriate for the intelligent database application 1in

question, since Prolog can be considered to be an
ultrasophisticated database query language with deductive
capability. It proved to be inappropriate, however, for many of

the other algorithmic language-based applications of interest:

programs involving optimization, computer—-aided design,
simulation, graphics, matrix processing, and a multitude of
other applications. Many of these programs could make good use

of AI capabilities, but are not structured to run 1in a
subprogram mode.

The STRUTEX program [4], a prototype s8ystem for the
conceptual design of structures to support point loads 1in two
dimensions, provides an 1llustration as well as test vehicle for
these concepts. STRUTEX 1s structured as a FORTRAN program that
accepts load, surface, and support data from the user (provided
in part by means of a mouse), and calls AI 1rules to make
decisions regarding the support structure appropriate to that
load. Application programe such ag STRUTEX 1{llustrate the
widespread need for embedded AI, 1.e. the 1ntegration of AI and
algorithmic languages in a fashion that allows the AI facilities
to be called as subprograms from the algorithmiec program. 1t is
this need that was addressed by the current phase of the

project. The results are as follows:

Page 2

A Prolog-based AI capability callable in embedded
mode from algorithmic programs was created

The developed capabillty was tested

in conjunction with the STRUTEX system
Since Phace 1 of this project achieved the embedding of
algorithmic subprograms in an Al system, and Phase 2 embedded AI
facilities in algorithmic main programs, the result is a product
whose two components supplement each other 1in a highly

synerglstic fashion. The addition of embedded AI capabilities to

algorithmic programs has already been discussed; the
augmentation, however, works in the other direction as well.
Thus, the invocation of Prolog from algorithmic language allows

Prolog to inherit traditional control structures, in which it is
greatly deficilent, from these languages. As another example,
floating point operations, which are missing from this
particular Prolog implementation, can be added by invoking
algorithmic subprograms from Prolog. Additional asugmentations

avre limlited only by the imaglination of the programmer.

D.RIGINAL PAGE IS
OFE POOR QUALITY

Page 3

TECHNICAL DESCRIPTION

The goal of embedding Al facilities in algorithmic languages
was achieved in a manner technically similar to that which
achieved the integration of algorithmic languages into Prolog:
the addition of the new evaluable predicates import and export
to Prolog. Before degecribing these predicates we will briefly
review the conceptually similar escape predicate, which is

described in detail in [(2].

The escape Predicate

The escape predicate 18 the heart of the Prolog/RIM

interface; moreover, we have noted that this predicate can serve

as an interface among a variety of other systems. egscape would
work as well, for example, as a Prolog/graphics package

interface, or a LISP/RIM interface, etc. In fact, the only
requirement appears to be lists or list-like structures in the
calling language (1i.e. the language calling the escape), since
otherwise the operations needed to set up and decode escape's
parameters are too cumbersome. The fact that few languages
besides those oriented toward Artificial Intelligence feature
list structures as primitives, rather than as a construct to be

defined by the programmer, may account for the fact that the

Page U

ORIGINAIL. PAGE IS
OE POOR QUALITY,
escape mechanism 1s not a universally implemented feature.
In YRIM, the Prolog/RIM integration describeda 1in (21, the
escape predicate is added to the Prolog side of the interface;
1t 1is installed 1n Prolog as a new evaluable predicate.

Here 1is the design of the escape predicate as it was

implemented:
escape(X,Y)
1 1
]]
S ———— + ke - +
) 1
& [}
list containing result returned
information on in this argument

operations to
be performed
The 1nput 1list X 1s expected to be a linear list of atoms
(symbolic or numeric); the result appears bound to Y, and also
has the torm of a linear list of atoms. Note that qQuoted strings
are legltimate atoms in Prolog, so0 passing a list
{floatadd, '37.82', '-10.036"']
iz a reasalble method of implementing real addition in Prolog.
The Interface between Pascal and Prolog consists of a set of
proceduraes within the Prolog implementation that move the values

of the {nput list elements to a parameter buffer internal to the

Pascal progZzrram on the Pascal side of the interface, whence they
mesy be: manipulated by the Pascal program as desired. Returning
parameters to Prolog is the reverse of this process: the result
values are placed in the parameter Dbuffer, and interface

routines use these values to create a Prolog list and bind it to

Page 5

the second parameter of escape. The reader is again referred to

the program documentation for details.

The format [<action_code>, <arg>, ---] 1s typical for 1input
parameter lists, i.e. pParameters to be passed to the escape
predicate 1n a list bound to the first parameter. This means

that the appropriate format for a Pascal program implementing
e¢3cape 1s a case statement on <action_code>; in other words, the

Pascal program 1s typically an interpreter interpreting commands

olf the form [<action_code>, <arg>, ---].

Page 6

PRIGINAL PAGE IS
DE POOR QUALITY

Invoking Prolog in Embedded Mode

One of the most important reasons embedded AI 1s a rare
phenomenon is that AI facilities are salmost universally
implemented as subroutine packages written in the major Al
languusges LISP and Prolog. Since 1t may be said of both of
thege languages that the syntax consists entirely of subroutine
calls, these Al packages have the apbearance of language
extensions, or even of new speclal-purpose languages.

The point of these observations 1is that embedding LISP- or
Prolog-based AI facilities 1s tantamount to embedding the entire
language 1nterpreter and/or run-time environment. These are

large stand-alone programs not designed to run in subroutine

mode, and thus present formidable problems to the would-be user
who intends to invoke them from non-Al programs. We have been
able to develop techniques, however, that allow the Frolog

interpreter to interact with algorithmic programs in & manner
that lmplements embedded AIl. This interaction 1s the main result
ot the present research.

Two factors combined to make 1t possible to embed Prolog in
algorithmic languages, one a straightforward separate
complilation capability offered by many language systems, the
other & brilliant design feature devised by the Prolog

implementors.

Page 7

Interpreters, regardless of the language 1nterpreted, tend to
have similar overall structure; in particular, there 1s almost

inevitably a main interpretation loop having the following

general form:

loop
perform housekeeping:
process next language element;
end loop
The first factor referenced above is the VMS Pascal [6] module
feature. Prefacing a Pascal program with the Keyword module
rather than program signals the compiler that the program is a

separately compiled unit whose internal facilities (data and

subroutines) may be made available (by prepending the phrase

[globall) to other programs. Such a separate compilation
capability, while not a part of standard Pascal, is almost

universal in modern Pascal systems running on microcomputers as
well as mainframes. We may therefore use it with l1ittle concern
that portability and general usefulness will be compromised.
Since the Prolog interpreter can trivially be made into a
module, and since procedures within it can therefore be made
avallable to calling programs, it is stralightforward to insert a

procedure like this:
[global]l procedure test;
begin
perform necessary housekeeping;

perform next interpreter action;
enq;

which can then be called by any program that 1s linked together

Page 8

with the Prolog module. The obvious question is: what is the
"next interpreter action'"; more particularly, is it what we want
done 1in order to do AI in an embedded mode?®? As it stands, the
answer 1is “no", since, as indicated above, the next interpreter
action 18 to "process next language element"™. In Prolog this
amounts to prompting the user for the next query, deducing an
answer from the rulebacse, and printing this answer out for the
user.

This interactive mode is inappropriate for embedded
applications, where the Al facilities must communicate not with
a human user in interactive mode, but with the calling program.
It is at this point that the second factor mentioned above comes
into play. As 1t happens, the '"next interpreter action"
performed in the loop 1is defined not by a body of Pascal code,
but by Prolog statements that are read in by the interpreter
upon initialization. These Prolog statements define (are the
hody of) the Prolog procedure $top; "perform next interpreter

action" then amounts merely to causing the invocation of $top.

This gimplicity of function allows us to reproduce procedure

(K

st verbatim:

ORIGINAL PAGE IS
OE POOR QUALITY

Page 9

{globallprocedure test;
var xX:term; e:env;
begin
choicepoint := 0; { housekeeping code }
NewEnv(e, nil, 0, nil, 0): { more housekeeping code }
{ the following statement invokes Prolog procedure $top: }
if topA " .proc <> nil then Goal(MakeFunc(topA, 0, nil, 0);
KillStacks (0); { yet more housekeeping }
end;
The significance of the fact that the basic interpreter action
18 defineda 1in terms of Prolog c¢ode which is read in at
interpreter 1initialization time is that if we do not like what
the interpreter does, we need not reprogram long sections of
obscure Pascal code; changing the Prolog statements defining
$top is all that is required. This, however, is quite easy to

do, since Prolog is8 a high-level language. To tranemit a feel

for what 1is involved, we present part of the original definition

of $top.

'$top' :- write('?- '), read(X), nonvar(X), 'sexec'(X).

'$exec'(end) :~- !, end, nl.

'$exec’'((?- end)) :- !, end, nl.

'$exec'(G) :- '$gnda'(Gg), ', G.

'$exec'(G) :- G, write('==> '), write(G), write(' ? '), 'sask’.
As can be seen, $top writes out the prompt to-", reads the
user's 1input, makes gsure that this input 18 not solely a

Page 10

variable, and - executes it by invoking $exec on it. The
definition of $exec, in turn, follow immediately. The first two
clauses simply cause termination 1f the user types "end" or
"?-end". The last two clauses of the definition deal with the
cases where G does, respectively does not, contain variables; in
vither case, G 1s invoked. When no additional answers for G
exist, $exec completes, causing $top to complete as well and
return to the interpreter loop.

For the purposes of implementing embedded Prolog it was
necessary to change the above definition of $top so that it
accepted data from the calling program rather than the user,
processed 1t as desired, and passed the results back to the
calling program, rather than printing them out at the terminal
by means of a write(G). Here 18 the modified version of $top:

'$top' :- 1import(X), 's$process’'(X).
The inttial $ sign, inciaentally, is a naming convention
deglgnating the procedure name ag part of the interpreter loop
definition; adherence 1is optional. The ' marks surrounding such
names are needed to let Prolog accept "strange'" characters such
as $ without complaint.

As will be seen in the course of the subsequent discussion,
the procedures import(X) and export(X) transfer data from,
revpectively to, outside programs written in algorithmic
languages. The data in question 1is bound to variable X;
procedure tprocess(X) processes 1it.

The elegance and simplicity of this method of defining the

Page 11

interpreter loop is apparent. What is even more impressive 1is
the flexibility this approach yields: the code defining the
action of the interpreter is available to the Prolog programmer
for modification. The power of this particular modification
which we have undertaken becomes apparent when it is noted that
the definition of $process is to be supplied by the user, and
may do anything at all that the user desires. As a simple test

case, the following rule definition was used:

'$process'(X) :- write(' imported/exported '),
write(X), export(X).

The data 1imported into Prolog 1is written on the terminal,

whereupon export returns it unchanged to the calling program.

Page 12

ORIGINAL PAGE IS
OF POOR QUALITY.

The import and export Predicates

The escape predicate described above transfers information to
A non-Prolog program, which acte on 1it, whereupon the results
are transferred back into the Prolog program, For the purposes
of this work it has proved useful to break out the primitive
components of the transfers involved. As 1ndilcated, import(X)
and export(X) are new evaluable (built-in) predicates that have
been added to Prolog to achieve the goals of this project.

import is used to make data created externally (say by an

algorithmic program) available to Prolog:; export passes data
back to the "outside". In both cases the data involved is bound

to the parameter of the predicate. Since they are central to the
resultas that have been achieved, we will describe the structure
And use of these predicates in detaill.

The communications interface between Prolog and the "outside
world" that was devised to implement these predicates is a
buffer structure that i1s shared by the programs that need to

exchange information. In the (typical) case of the STRUTEX

aystem A FORTRAN program is communicating with the
(Pazcal-bacsed) Prolog interpreter; we will give the buffer
declarations on both cides of the interface. The Pascal

declarations are:

Page 13

arg_1: [COMMON(FPCOMI)] array{l..maxargs] of integer;
arg_r: [COMMON(FPCOMR)] array(l..maxargs] of real;
arg_s: [COMMON(FPCOMS)] array[l..maxargs] of alpha;

arg_type: [COMMON(FPCOM2)] array[l..maxargs] of char;

AS can be seen, the buffer structure consists of four parallel
arrays. Array arg_typel(1i] contains a one—-character flag
indicating whether the 1'th data element is of type integer

(flagged by '1i'), real ('r'). or string ('s'), i.e. packed

array[1..alphasize] of char. If the element is an integer, it 1is

contained 1in arg_1{i]: if real, in arg_r{i}l]. and if string, in
arg_sl[i]. In the Prolog interface reals are actually passed in
arg_s as strings, due to quirks of this particular Prolog
implementation. Array arg_r is thus not used in STRUTEX, but

has been retained for the sake of generality.

This storage scheme optimizes simplicity and portabllity at
the expense of space: to add an unforeseen data type, we need
simply add the declaration

arg_u: [COMMON(FPCOMU)] array([l..maxargs] of unforeseen_type;
and declde on a character flag to denote 1t. Since the number of
data elements to be passed will generally be moderate (maxargs
ls currently set to 10), allocating unused space 1is well worth
the snvings in complexity that result over a scheme using data
ovrhrlays produced by EQUIVALENCEing. The phrases
(COMMON (FPCOM¥*)] in +the above declarations i1ndicate to the
compller that the storage to be allocated to these data
structures 1is to be a COMMON area that will be shared by other

programs; FPCOM* names the COMMON area 1in which this data

Page 14

structure is to be placed. The FORTRAN side of the interface

looke like thie for integer data:

INTEGER intval(maxargs)
CHARACTERX*1 argtype(maxargs)
COMMON /FPCOM2/ argtype
COMMON /FPCOMI/ intval

and analogously for the real and string buffers.

Information Transfer

We will now describe how information flows into and out of
these Dbuffers on both sldes of the interface. The interface
operates as follows:
when a FORTRAN program wishes to i1invoke embedded Prolog, it
places the information to be passed to Prolog in the buffer(s)
of the corresponding type, with the appropriate flag in the flag
buffer, Subroutines to perform this placement in a uniform and
modular manner are provided, and will be discussed below. Once
the data to be transferred has been placed, the subroutine call

CALL TEST

invokes the (global) procedure test within the Prolog

interpreter, thus 1invoking $top, as discussed above,. On the
Prolog side, a call to import will retrieve the data stored in

the shared buffer structure, bind it to the parameter of import,

and make it available to the Prolog rules. If there 1is data to
be passed back, procedure export places it in the buffer

Page 15

structure on the Prolog side.

Here is a listing of subroutine pushstr, which is used by the
FORTRAN programmer to place string data in the buffer structure

for transmittal to Prolog:

SUBROUTINE pushstr(sarg)

implicit none

integer alfalength, maxargs

PARAMETER (alfalength = 8, maxargs = 25)

character*(*) sarg
character*(alfalength) strng

INTEGER no_of_args

character*l argtype(maxargs)

common /fpcom2/ argtype

common no_of_args
character*(alfalength) strval(maxargs)
common /fpcoms/ strval

gstrng = sarg

no_of_args = no_of_args + 1

strval(no_of_args) = strng

argtype(no_of_args) = 's'

RETURN

END

A8 can be seen, this routine places its argument in the
appropriate buffer array, sets the type flag to 's', and updates
no_of__args, the number of arguments inserted sO far. To
transmit the string 'Hello', for example, the programmer would

write

CALL PUSHSTR('Hello')
The routines for inserting integer and real arguments into the
buffer structure are analogous. Here 1s a complete sequence

corresponding to a typical parameter setup:

ORIGINAL PAGE IS
OF POOR QUATITY

Page 16

NO_OF_ARGS = 0

CALL PUSHSTR('color')

CALL PUSHSTR('red')

CALL PUSHSTR('volume')

CALL PUSHREAL('16.47"')

CALL PUSHSTR('amount')

CALL PUSHSTR(100)

CALL TEST
What happens to these parameters on the Prolog side depends on
the particular rules which the user has provided as definition
of $process.

As c¢can be seen, the interface 1s rather straightforward on
the FORTRAN side, the perhaps most unaesthetic element being the
requirement to initialize NO_OF_ARGS to O. Means of obviating

this requirement exist and were considered, but the cure proved

worse than the disease in every case.

The Prolog Side of the Interface

From the programmer's point of view, the Prolog side of the
interface is 1rreducibly simple. Suppose the above sequence of
calls has been made; the call to TEST then causes ttop to be
actlivated, which in turn causes $process to execute, which does
whatever the (Prolog) programmer has programmed. If a Prolog
rule nceds access to the parameters, an invocation of import(X)
doecs 11 after completing, the parameter X will be bound to the
11lat

[color, red, volume, '16.U47', amount, 100]

Page 17

which <c¢an then be vused by the Prolog program as needed.

The implementation of import and export is easily described.
Two procedures, Doimport and Doexport, were written to act as
handlers for these constructs. As indicated above, Doimport
collects the data from the buffer structure (and counts the
elements transmitted), converts them into Prolog atoms, collects
these atoms into a Prolog list, and finally binds this 1list to
the argument of import. Doexport does the inverse: its argument
mugt be bound to a list of Prolog atoms. These atoms are pulled
off the 1list one by one. Their data type 1is determined, they are
converted to the corresgponding buffer structure type (integer,

real or string), and lnserted in the buffer structure.

Page 18

Calling Program Control of Embedded Prolog

We have described how information can be passed from FORTRAN
to embedded Prolog and accessed by the invoked Prolog rules. The
nature of Prolog, however, makes it easy for the calling program
to exert considerable control over the processing performed on
the Prolog side. If the Prolog rules are get up correctly, any
desired Prolog procedure to be invoked can be specified from the
FORTRAN <=ide. In fact, since Prolog can interpret the passed
data, a virtual interface of any desired design can easily be
created. The one we have designed is simple and powerful, but we
cmphasize that 1t 1is only one of an 1infinite number of
porasibtilities.

Our interface design 1s based on the observation that there
are two basic operations that can be performed 1n Prolog:
invocation of a Prolog procedure, and updates of the Prolog
database. It can be maintained that the database updates are
themselves merely procedure calls to the assert and retract
procedures. This is correct, but updates are conceptually
suffliciently distinct to deserve their own classification. Our
tprocess procedure therefore expects the data being passed to it
to be in one of two possible list formats:

[assert, <predicate>, <arguments>]
and

[ecall, <function>,<arguments>]

Page 19

Thus, suppose the list passed from FORTRAN to Prolog is
(assert, p, a, b, cl
Then the Prolog procedure call
assert(p(a,b,c))
is executed. Similarly, passing the 1list
[cAll, £, %X, ¥, z] causes call(f(a,b,c)) to be executed,

invoking f£(a,b,c) as Prolog procedure.

Here are the Prolog statements that create this interface:

‘$process'(¥) :- X = [assert ! Y],!'!, F =.. Y, assert(F).
/% e.g. 1f X = [assgert, £, a, b, cl,
an assert(f(a,b,¢c)) is executed */

"¢procesa'(X) :- X = [call | Y],!, F =.. Y, call(F).
/% e.g. 1f X = [call, £, al, a call(f(a))
is executed */

'$procees'(X) :- write(' imported/exported '),
write(X), nl, export(X), nl.
/% thie last definition can be expanded
to do whatever is desired with X */

CRIFNMAT PACE 18

OF FOOR QUALATY

Page 20

A Cage Study: STRUTEX

The embedded AI facilities we have developed are being tested
and applied in STRUTEX, a prototype knowledge-based system for
the conceptual design of structures to support point 1loads 1in
two dimensions.

Ag presently constituteq, STRUTEX combines a database, a
knowledge base, and a graphics display into a prototype
knowledge-based system. The program simulates an engineer,
beginning work on a new project with a blank piece of paper, and
a discussion with his manager. The graphics screen plays the
part of the blank plece of paper, with a text area for dialogue
between the manager and engineer.

The user inputs data about the load, such as number of loads,
type of load (e.g. gravity losad), the load magnitude, and
similar information. A mouse 18 used to position the load on
the screen. The user then inputs data about the support surface,
such ns position with respect to load, whether or not it 1s a
point surface, and the area of & non-point surface. The mouse is
ngnln used to display the midpoint of the support surface, and
the program calculates the length of the surface and the
distance from the surface to the load point(s). Finally the
uger cspeclifies whether or not the support must be 1lightweight.

All of this data is stored in the database (RIM).

Page 21

The knowledge base 13 then executed to determine the type of
support (e.g. beam or truss) that is required. This
determination 1is based on knowledée about the relationship
betweran the supprort surface and the load and data 1in the

databnse. Here is a Prolog rule typlcal of those called in

embedded mode by the FORTRAN-based STRUTEX program:

beam :- surflc(below),surfa(large), not(suppwt(light)).
Ik
a beam support is appropriate if the support surface

location is below the load, the surface area 1is large,
and the support is not known to be lightweight

*
The program computes the coordinates of the members of the
support, which are also entered into the database. If there is
A single load point and the support type is a truss, then a
determination is made of whether or not bracing is needed by
cheeking the ratios of the member lengths againet the loading
condttions. 1f there are multiple load points and the support
typre s a truss, then the user designs an initial truss guldea
by rocommendations from the knowledge base. Features of the
decsign are checked against the Knowledge base and
recommendations for improvements are made. Thega iterations
continue until the user is satisfied wilith the design. Each new

support ls displayed on the graphics screen.

ORIGINAL PAGE IS
OF POOR QUALITY]

Page 22

The FORTRAN/Prolog Interface

We will now examine the interface used to call the embedded
rule base from FORTRAN. The FORTRAN main program component of
STRUTEX 1 structured so that requirements for services such as
graphics support, RIM database accesses, or calls to embedded Al
fnellities, are satisfied by CALLe to handler subroutines. These
handlers have the logical structure of case statements (although
FORTRAN must, of course, simulate this effect by means of IFs or
computed GOTOs): thus invocations of these handlers have as
parameteras a numeric code i1indicating the particular service
requlred, plus the specific information required to perform that
eervice. The name of the handler for the embedded Knowledge base
In KBXEC; a listing of KBXEC may be found in Appendix 1.

The following FORTRAN statements define the 1interface among

STRUTEX , the graphics handler, and the RIM database handler:

ORIGINAL PAGE I5
OF POOR QUALITY

Page 23

IMPLICIT REAL*8 (A-H, 0-2)

CHARACTER*8 PLOADT, SURFLC, SUPTYP, SUPPWT

CHARACTER*8 SURFT, CHOICE, BRCTYP, CHBRAC, SIDES

CHARACTER*10 TEMP

CHARACTER*80 STRING
COMMON/LOADC/PLOADN, PLOADT, PLOADX, PLOADY, HLOAD, VLOAD, DIST
COMMON/SURFC/SURFLC, SURFXS, SURFYS, SURFXE, SURFYE, SURFA,

1 SURFXM, SURFYM
COMMON/SUPPC/SUPPNO, SUPTYP, SUPPWT, SUPPXS, SUPPYS, SUPPXE,

1 SUPPYE, SUPDIS
COMMON/SHRCOM/NPTS, NTOTSP, PIXPER, XSECT, YSECT, SURFT,
1 RLOAD, RSRFAC, RSUPRT, RATIO, CHBRAC, BRCTYP, SIDES,SIDDIF

COMMON/MEMXY /SMEMNO(100),XS(100),XE(100),YS(100),YE(100)
DIMENSION ARLOAD(7),ARSURF(8), ARSUPP(8)

EQUIVALENCE (ARLOAD(1),PLOADN), (ARSURF(1),SURFLC),
1 (ARSUPP(1),SUPPNO)

The subsequent statements:
integer alfalength, maxargs

PARAMETER (alfalength = 8, maxargs = 10)

CHARACTFR¥*(alfalength) strval(maxargs)
character*1l argtype(maxargs)

integer no_of_args t for sharing with the
common no_of_args ! gtacking routines only

common /fpcoms/ strval

COMMON /fpcom2/ argtype
define the FORTRAN/Prolog communications interface, which has
heen described previously. We will describe the action of KBXEC

for a typlical invocation of the handler:

¢ UGTE KNOWLEDGE BASE TO DETERMINE HOW DIAGONALS
¢ ARF TO BFE DRAWN BETWEEN MEMBERS OF A TRUSS
¢ BY CHECKING LENGTH OF TWO ADJACENT SIDE MEMBERS

CALL KBXEC(2,HDIST, TDIST, ALPHA)

The cection of KBXEC code executed as a result of this call is:

ORIGINAL PAGE i3

P
age 24 OF POOR QUALITY]

ORIGINAL PAGE IS
OE POOR QUALITY,

DFTERMINE HOW DIAGONALS ARE TO BE DRAWN
BETWEEN MEMBERS OF A TRUSS

aaa

)

IF(IOPT.EQ.2) THEN
no_of_args = 0

call pushstr('assert')
cnll pushstr('distl’')
call pushreal(tdist)
call test

no_of__args = 0
call pushstr('assert')
cnll pushstr('distz')
call pushreal(hdist)
call tesat
no_of_args = 0
cnll pushstr('call')
call pushetr('cmpsides') ! activate compare_sides rule in Prolog
call test
cnll ce('u',strval(1),SIDES)
read(strval(2), '(F8.2)')SIDDIF
FENDIF
The code segment
call pushstr('assert')
cnall pushstr('dist1l')
call pushreal(tdist)
caunen the character strings "assert'" and "disti', as well as
the renl number tdist, to be inserted into the interface buffer.
The subsequent line:
call test
Invokers the Prolog routine test, which, as Indicated earlier,
almply ncetlvates the Prolog 1interpreter on the goal (Prolog
predicate cnll) $top. Recall that $top 1is defined as

'$top' :- dimport(X), ‘'$process'(X).

SJuppoasa, {for example, that the value of tdist (which wasz passed

Page 25

to KBXEC &8s floating-point parameter) was 3.5. The import
predicate assembles the arguments passed in the interface buffer
into a Prolog list: -
(assert, distl, '3.5']
and binds 1t to X. (Note that the real number 3.5 has been
automatically converted to a Prolog string. The reason for this
will be set forth in the subsequent discussion of real
arithmetic operationg in Prolog.) Finally, $process is activated
with this value of X as argument.
As discussed above, the action of $process when encountering
a list beginning with the atom "assert" is to invoke the call
asgert(disti1('3.5'))
which 1ingerts the predicate distl1('3.5') 1into the Prolog
database.
The subsgequent code sequence similarly causes
dist2(<value of hdist>)

to be inserted. Finally, the sequence

call pushstr(’'call’)
call pushstr(‘'cmpsides’') ! activate compare_sides rule in Prolog
call test

causes execution of the Prolog procedure call(cmpsides), defined

as follows:

/* Rule COMPARE_SIDES; IOPT = 2 */

cmpsides :- disti(D1l), dist2(D2),!,
retract(distli(D1)), retract(distz2(D2)),
fminus (D1, D2, Siddif), fabs(Sidaif, Diffa),
faiv(piffa, D1, Pecdirfl), fdiv(Diffa, D2, Pcaif2),
csstuff(Pcdifl, Pecdif2).

Page 26

Ags 1s evident, this rule looks up the values of distl and dist2

in the Prolog database, binds the results to D1 respectively D2,
and deletes the current distl and dist2 entries from the
database. The procedure csgsstuff is then called with arguments
D1 ~ D2;/D1 and D1 - D2i/D2. Note that since this particular
Prolog implementation lacks floating-point arithmetic, such
operations must be performed by calls to procedures such as
fminus, which are defined in terms of +the escape predicate,
which in turn invokes FORTRAN c¢ode. We thus have FORTRAN
invoking embedded AI rules, which in turn can invoke FORTRAN
code; such invocations can chain indefinitely.

The csstuff procedure is defined as

csstuff(X, Y) :- (fgt(X, '0.1') ; fgt(Y, '0.1')),

export([notequal,Sidairl).

csstuff (X, Y) :- export([equal,sSiddir]).

The firet rule for csgstuff stipulates that 1f X > 0.1 or
Y > 0.1, then the character string 'notequal' and <the numeric
value of Siddif are to be inserted into the interface buffer;
otherwise, the string 'equal' and Siddif are inserted.

With completion of procedure cssgtuff, procedures cmpsides,
$process, and $top complete as well. With the completion of
$top, control is returned to the FORTRAN c¢alling program. In
this case, the code executed immediately after returning is

call ce('u',strval(1),SIDES)
reed(strval(2), '(F8.2)')SIDDIF

Page 27

Recall that the array strval 1s the one of the three parallel
interface buffer arrays in which string values are returned from
Prolog. The FORTRAN procedure cc converts from upper to lower
cage letters or back: in this case the string in strval(l)
(which was 'equal' or 'notequal') is converted to capitals and
the result stored in FORTRAN variable SIDES. ce is needed

because names with 1initial capitals designate variables in

Prolog: names beginning with lower-case letters denote
constants. Similarly, the real number value (returned in string

form) of Siddif 1s converted to floating point representation
via an internal read, and the result stored in FORTRAN variable
SIDDIF. This completes procesgsing of option 2 on part of KBXEC,

and control returns to the caller.

Implementation of Floating Point Operations

Since the University of York Prolog interpreter (51

emphasizes simplicity, floating-point operations are not
implemented. The STRUTEX operation, however, requires guch
operations at every turn. The ease with which floating-point

operations were added to Prolog 1s indicative of the flexibility
and simplicity of the interface that has been constructed.

Here are the Prolog rules defining floating-point operations:

Page 28

escape([1,F1,F2],[1t]).
escape([1,F1,F2],[1e]).
escape([1,F1,F2], [eal).
fge(F1,F2) escape([1,F1,F2], [gel).
Fgt(F1,F2) :- escape({[1,F1,F2], (gt]).
fplus(F1, F2, R) :- escape([2,F1,F2],([R]).
fminus(F1, F2,R) :- escape({3,F1,F2],[R]).
ftimes(F1, F2,R) :- escape((84,F1,F2],([R]).

P1t(F1,F2)
fle(F1,F2)
feq(F1,F2)

fdiv(F1,F2 ,R) :- egscape([(5,F1,F21,[R]1).
fabs(F,R) s - escape([6,F], [R]).
As 1s evident, each of these operations invokes the escape

predicate. Appendix 3 reproduces the subroutine IFACE, which
implements the case statement which is 1invoked by escape. To
illustrate its operation, we will consider the will consider the
rule for floating less-than:
£1t(F1,F2) :- escape([1,F1,F2],([1t]).
A typical call to the procedure appears thus:
£1t('3.29', '-2.6")
Recall that floating-point numbers are represented in string

format. This call invokes

egcape([1,'3.29', '-2.6']1,[1t])
which causes the arguments 1, '3.29', and '-2.6' to be placed in
the interface buffer as usual. Ags 1s generally the case, the
first argument (the "1") is a command code; the following line
of IFACE cases on this code:
goto (100,200, 300,400,500,600),4intval(l)
Recall that intval is the part of the interface buffer that
holds integer arguments. Since intval(l) contains the 1 that was
transmitted, control 1is transferred to statement 100 in IFACE.

The statements

Page 29

100 read(strval(2), '(F8.2)')r1
read(strval(3), '(F8.2)"'")r2

transform the real values, which are in the string
representation required by Prolog, to floating-point
representation, and store them in variables rl1 and r2. The
subsequent statements test the relationship between these

values:

IF (rl .gt. r2) THEN
strval(l) = 'gt'
ELSE IF (rl1 .eq. r2) THEN
strval(1l) = ‘eq'
ELSE 1IF (r1 .1t. r2) THEN
strval(l) = '1t"'
ELSE IF (r1 .le. r2) THEN
strval(l) = 'le'
ELSE IF (rl1 .ge. r2) THEN
strval(l) = ‘ge'

else
print %, ' *%%%x COMMAND CODE 2: WEIRD ARGS, NOT ORDERED'
END 1F
no_of_args = 1
argtype(l) = 's'

goto 3000

Since rl1 = 3.29 and r2 = -2.6, it is evident that ‘'gt' will be
gtored in strval(l). This string is returned to Frolog and made
into a 1list, [gt]. which becomes the second (output) argument of
escape. Since, however, this invocation of escape had [1t] as
second argument, and [1t] does not match [gt], the invocation
fails. This 1is, of course, the desired result, since 3.29 is not
less than -2.6.

An obvious Qquestion that might arise on examination of the

floating-point comparisons is why all of them were assigned the

Page 30

same action code, i.e. 1. The answer 1is that this was not a
compelled choice; chooging a separate action code for each
comparison is a feasible alternative. Design of the appropriate
IFACE FORTRAN <code 1is 1left as an exercise for the interested
reader; it 1s our opinion that the given design results 1in
somewhat cleaner code.

Operations such as Plt(F1,F2) are predicates that operate by
testing their operands and succeeding or failing, depending on
the outcome. Operations such as fplus (floating-point plus),
however, must produce results. The natural way to implement such
operations 1s as functions. Prolog syntax, however, does not
allow for functions: all procedures are subroutines. Values must
therefore be returned bound to an output parameter rather than
to the function name. Thus, to add 1.0 and 1.0, and print out
the result, we would write

fplus('1.0','1.0', X), write(X).
causing a '2.0' to be written out. The principle of operation of
the definition of fplus 1in terms of an escape predicate is
similar to that of flt; Appendix 3 provides detaills.

We have presented a complete dissection of a typical
invocation of embedded AI rules from a FORTRAN program, and
demonstrated how these rules could invoke FORTRAN code in turn.
Processing for the other options 1s analogous. As can be seen,

the calling and return sequences are stereotyped and rather

Page 31

gtraightforward; programming with embedded Al rules expressed in
Prolog thus becomes sufficiently straightforward to serve as a

standard programming technigue for algorithmic applications.

Power of Embedded Prolog

The STRUTEX rules reproduced in Appendix 2 correspond in
thelir effects to the CLIPS [3] rules used by the STRUTEX version
described in ([4]. It ie natural to pose qQuestions regarding the
relative and absgsolute power of Prolog rules.

Strictly speaking, CLIPS and Prolog are equivalent, since
both systems can implement a Turing machine. From the
programmer's point of view, however, it is fair +to say <that
Prolog 1s significantly more powerful than CLIPS. Most of the
features of CLIPS, such as the built-in rule base, are present,
or at least can be easily simulateq, in Prolog. In addition,
Prolog has a powerful deductive capability based on resolution.
Thie capability is central to the capabilities of Prolog, and is
not matched by any feature of CLIPS.

Prolog 18, of course, an extremely powerful etand-alone
programming language 1in i1ts own right. Itse capabilitlies are
sufflicliently impressive to have caused it to be chosen as the
language of Japan's fifth-generation project, as well as being
the dominant AI language in Europe. It suffers, however, from

severe deficlenciesg in the area of control structures, since all

Page 32

control flow 1in Prolog 1is based on backtracking rule
application. While this is natural for certain applications, it
can become an extremely unnatural way to program i1in situations
requiring more traditional control structures such as while and
do loops.

One of the most significant results of the present research
is that 1t imposes the control structures provided by the
traditional calling language on Prolog. As 1s clear from <the
calls to embedded rules we have examined, such invocations can
be enclosed within 1loops, if statements, or whatever other
construct the calling language offers, Programming in Prolog is
thus brought, perhaps for the first time, into the realm of

general-purpose algorithmic programming.

Page 33

CONCLUSION

A method for embedding Artificial Intelligence capabilities
based on Prelog rules has been reported. The techniques
developed were applied <to the STRUTEX program, a prototype
system for the conceptual design of structures to support point
loads in two dimensions. The Prolog-based rules proved to be
more expressive and powerful than the original CLIPS version;
mereover, needed featureg such as real arithmetic were easily
supplied by means developed 1in the 1initial phase of this
project. The approach developed should be applicable to a wide
variety of algorithmic languages, since our implementation
presupposes only the existence of a straightforward separate
compilation capablility, as supplied by the algorithmic language
processing sttems of most modern machines.

At least as significant a result is the imposition of control
\structures provided by the algorithmic c¢alling language on
Prolog. This superposition eliminates much of the difficulty
which Prolog programming poses, thus making <this powerful Al

tool avallable to the algorithmic programmer,.

Page 314

REFERENCES

BCS RIM Version 6 User Guide, Boeing Commercial Aircraft
Company: Central Sclentific Computing Complex Document Z-3,
NASA/Langley Research Center, May 1985

Feyock, S., Implementation of Artificial Intelligence Rules
in a Data Base Management System, NASA Contractor Report
178048, VAIR, INC., February 1986.

Riley, G., C. Culbert and R. Savely, '"CLIPS: an Expert System
Tool for Delivery and Training'", Proceedings of the Third
Conference on Al for Space Applications, November 1987.

Rogers, J., S. Feyock and J. Sobieski, STRUTEX: A Prototype
Knowledge-Based System for Initially Configuring a Structure
to Support Point Loads in Two Dimensions, submitted to AIEE
3, Los Angeles.

Spivey, J., Portable Prolog User's Guide, Dept. of Computer
Science, University of York, Heslington, York, England,
October 1983.

"Programming in VAX FORTRAN", Document AA-DO3UD-TE, Software

Version V4.0, Digital Equipment Corporation, Maynard, MA,
September 1984.

Page 35

Appendix 1

STRUTEX Rules

'$process'(X) :- X = [assert | Y],!., F =.. Y, assert(F).
/% e.g. if X = [assert, f, a, b, cl,
an assert(f(a,b,c)) 1s executed */

'$process'(X) :~- X = [ecall | Y],!, F =.. Y, call(F).
/¥ e.g. 1f X = [call, £, a, b, cl,

a call(f(a,b,c)) is executed */
'$process'(X) :—- write(' imported/exported '),

write(X), nl, export(X), nl.
/% this last definition can be expanded
to do whatever 1s desired with X */

£1t(F1,F2) :- escape(([1,F1,F2]},[1t]).
fle(F1,F2) :- escape([1,F1,F2], [1le]).
feq(F1,F2) :- escape([1,F1,F2], [eq]).
fge(F1,F2) :- escape([1,F1,F2], [ge]l).
fet(F1,F2) :- escape([1,F1,F2],[gtl]).
fplus(F1,F2,R) :- escape([2,F1,F2], [R])).
fminus(F1,F2,R) :- escape([3,F1,F2], [R]).
ftimes(F1,F2,R) :- escape([4,F1,F2], [R]).
faiv(F1,F2,R) :- escape([(5,F1,F2], [R]).
fabs(F,R) :- escape([6,F], [R]).

/2620206 2 2k ok o A 2 ok e 3k e o dkc e k6 e 2K bk o ke e e e ok ek ok K ok ok Kk ok

/% application program starts here %/
/% 3038 o 206 i o e afe ke 2 e Ak 2 b e A A K e A Ak e 3k ke e e e ok Ak ke kK

/*%rule BEAM; IOPT = 1 %/
support :- beam,!, assert(support(beam)), export([beam]).

support :-~ truss,!, assert(support(truss)), export({truss])).

Page 36

aupport !~ atring,!, asasrt(support(string)), expeort([atringl).

beam :- surflc(side), surfa(point).
beam :- surflc(side), surfa(large), not(suppwt(light)).
beam :~ surflc(below), surfa(point).
péém :- surflc(below), surfa(large), not(suppwt(light)).

surflc(above), surfa(point), not(ploadt(gl)),
not(suppwt(light)).

o
°
[
3
]

/% Rule TRUSS */

truge :- (gurflc(side) ; surflc(below)),
surfa(large), suppwt(light).

truss :- surflc(above), surfa(large),
not(ploadt(gl)), suppwt(light).
/% Rule STRING */

string :-~ surflc(above), ploadt(gl).

/% Rule BRACE_TYPE; IOPT = 4 %/
brcetype :- alpha(Alphaval),!,dobracetype(Alphaval).

dobracetype(Alphaval) :~ f£1lt(Alphaval, '40.0').!,
assert(typeofbrace(v)), export({v]).

dobracetype(Alphaval) :- assert(typecfbrace(z)), export((z]).

/% Rule COMPARE_SIDES; IOPT = 2 */

cmpsides :- distli(bl), dist2(b2),'!,
retract(disti(D1l)), retract(dist2(D2)),
fminus (D1, D2, Siddif), fabs(Siddif, Diffa),
faiv(Diffa, D1, Pcdifil), faiv(Diffa, D2, Pecdir2),
csstuff(Pedifl, Pecairfz, siddir).

csstuff(X, Y, Siddie) :- (fPgt(X, '0.1') ;: fgt(Y., '0.1')).
export([notequal,siddir]).

csstuff(X, Y, Siddif) :- export([equal,Sidairf]).

Page 37

/% Rule BRACE_CORRECT for triangles; IOPT = 33 %/

brcorrtr :- triok(Alpha),!, retract(triok(Alpha)),

triokstuff(Alpha).
triokstuff(A) :- £1t(A, '15.0'), export([(small,'0.0']).
triokstuff(A) :- fgt(Aa, '120.0'), export([large,'0.0'])).

triokstuff(A) : - export([good,'0.0']).

/% Rule BRACE_CORRECT; IOPT = 3 %/

brcorrqQd :- qQuadok(Alpha),!, retract(quadok(Alpha)),
qokstuff (Alpha).

qoketuff(A) :~ FLt(A, '15.0'), export([sesmall,'0.0']).
qQokstufrf(A) :- fgt(A, '75.0'), export([large,'0.0']).
qokstuff(A) :- export({good,'0.0']).

/% Rule BRACING; IOPT = 5 %/

bracing :- xnl(N1), dist(D), toleranc(Tol),!?,
fdiv(N1,D,Temp), fdAiv(Temp,Tol,R), fabs(R,Ratio),
(fgt(Ratio, '1.0') -> Brace = yegs ; Brace = no),
assert(ratio(Ratio)), assert(brace(Brace)),
export({Brace, Ratio]).

/% Rule EXPLANATION; IOPT = 8 %/

explaln :- support(Supp).nl,
wrilte (' BREARRBARRBRRBUERRABURRBRHRUBBRERGHBGBHAR"),
nl,nl, write(' A '), write(Supp),
write(' 1s the choice for a support.'), nl, nl,
write (' HRRRRHAHBBRRUBBBRERBRRARARARBRRR AR RHRTHE),
nl,nl, write(' Reasons: '), nl,!, reasons, fail.

reasons :- surflc(side),
write(' The support surface is to the side of the loads.'),nl.

reasons :- surflc(below),
write(' The support surface is below the loads.'),nl.

reasons :- surflc(above),
write(' The szupport surface ie above the locads.'),nl.

Page 38

S

reasons ;- surfa(lsrsge),
write(' The support surface is not a point.'),nl.

reasons :- suppwt(X),

(X = 1light ->
write(' The gupport surface must be lightweight. ')

: write(' The sgupport can be heavy.')), nl.

reasons :- ploadt(vl),
write(' There are only vertical loads.'),.nl.

,

e

reasons :- ploadt(gl),
write(' There are only gravity loads.'),nl.

reasons :- ploadt(sl),
write(' There are only sideways loads.'),nl,.

reagone :- ploadt(gs),
write(' There is a combination of gravity and sideways loads. '),

nl.

reasons :- ploadt(vs),
write(' There is a combination of vertical and sideways loads.'),

nl.

Page 39

Appendix 2

Embedded AI Calling Routine

SUBROUTINE KBXEC(IOPT,HDIST, TDIST,ALPHA)

THIS SUBROUTINE INTERFACES WITH THE KNOWLEDGE BASE
STRINGS ARE ASSERTED AND CLIPS IS EXECUTED

aaQaan

IMPLICIT REAL*8 (A-H, 0-2)

CHARACTER*8 PLOADT, SURFLC, SUPTYP, SUPPWT

CHARACTER*8 SURFT, CHOICE, BRCTYP, CHBRAC, SIDES

CHARACTER*10 TEMP

CHARACTER*80 STRING
COMMON/LOADC/PLOADN, PLOADT, PLOADX, PLOADY, HLOAD, VLOAD, DIST
COMMON/SURFC/SURFLC, SURFXS, SURFYS, SURFXE, SURFYE, SURFA,

1 SURFXM, SURFYM
COMMON/SUPPC/SUPPNO, SUPTYP, SUPPWT, SUPPXS, SUPPYS, SUPPXE,

1 SUPPYE, SUPDIS
COMMON/SHRCOM/NPTS, NTOTSP, PIXPER, XSECT, YSECT, SURFT,

1 RLOAD, RSRFAC, RSUPRT, RATIO, CHBRAC, BRCTYP, SIDES, SIDDIF
COMMON/MEMXY,/SMEMNO(100),XS(100),XE(100),YS(100),YE(100)
DIMENSION ARLOAD(7),ARSURF(8),ARSUPP(8)

EQUIVALENCE (ARLOAD(1), PLOADN), (ARSURF(1),SURFLC),

1 (ARSUPP(1),SUPPNO)

integer alfalength, maxargs
PARAMETER (alfalength = 8, maxargs = 10)

CHARACTER*(alfalength) strval(maxargs)
character*1 argtype(maxargs)

integer no_of__args ! for sharing with the
common no_of_args ! gtacking routines only

commonh /fpcoms/ strval
COMMON /fpcom2/ argtype

C
C INITIALIZE THE KNOWLEDGE BASE AND LOAD THE RULES
C

IF(IOPT.EQ.0) THEN

no_of_args = 0
do 1 = 1, maxargs
argtype(i) = *
end do
END IF

Page 40

C
C DETERMINE THE TYPE OF SUPPORT THAT IS REQUIRED
C

IF(IOPT.EQ.1) THEN

no_of_args = 0

call pushetr(‘'assert')

call pushstr('ploadt')

call pushstr(ploadt)

call test

no_of__argg = 0

call pushstr('assert')
call pushstr('surflc')
call pushstr(surflc)
call test

no_of_args = 0

call pushstr('assert')
call pushstr('suppwt')
call pushstr(suppwt)
call test

no_of_args = 0

call pushstr('assert')
call pushstr('surfa')
call pushstr(surft)
call test

no_of_args = 0

call pushstr('call')
call pushstr('support')
call test

call cc('u', strval(li), suptyp)

Cc TRANSFER RESULT TO suptyp(1l), CAPITALIZING THE LETTERS
ENDIF

C

C DETERMINE HOW DIAGONALS ARE TO BE DRAWN

C BETWEEN MEMBERS OF A TRUSS

C

IF(IOPT.EQ.2) THEN
no_of_args = O
call pushstr('assert')
call pushstr('dist1')
call pushreal(taist)
call test

no_of_ _args = 0

call pushsgtr('asgert')
call pushstr('dist2')
call pushreal(hdist)
call test

(Page U1

Lo i

no_of__args = 0
call pushetr('call')
call pushetr('cmpsides')
(o4 ACTIVATE COMPARE_SIDES RULE IN PROLOG
call test

call ce('u',strval(1),SIDES)
read(strval(2),'(F8.2)')SIDDIF
ENDIF

DETERMINE IF BRACING CORRECT FOR QUADRILATERALS
IF ALPHA < 15 THEN BRACING IS NOT CORRECT
IF ALPHA > 75 THEN BRACING IS NOT CORRECT

OO0

IF(IOPT.EQ.3) THEN
no_of_args = O
call pushstr(‘'assert')
call pushstr('quadok')
call pushreal{(alpha)
call test

no_of_args = 0
call pushstr('call')
call pushstr('brcorrqd')
C ACTIVATE BRACE_CORRECT RULE IN PROLOG
call test

call ce('u', strval(1l),CHBRAC)
read(strval(2),'(F8.2)')RATIO

ENDIF
DETERMINE IF BRACING CORRECT FOR TRIANGLES

IF ALPHA < 15 THEN BRACING IS NOT CORRECT
IF ALPHA > 125 THEN BRACING IS NOT CORRECT

aoaaanon

IF(IOPT.EQ.33) THEN
no_of_args = 0

call pushstr('asgssert')
call pushstr('triok')
call pushreal(alpha)
call test

no_of_args = 0
call pushsgtr('call')
call pushstr('brcorrtr')
C ACTIVATE BRACE_CORRECT RULE IN PROLOG
call test

call ce('u', strval(1l1),CHBRAC)
read(strval(2), '(F8.2)')RATIO

Page U2

ENDIF

DETERMINE TYPE OF BRACING
IF ALPHA GE 40 DEGREES THEN 2 TYPE IS CHOICE
IF ALPHA LT 40 DEGREES THEN V TYPE 1S CHOICE

a0 aan

IF(IOPT.EQ. U4) THEN
no_of_args = 0

call pushstr(‘'assert')
call pushstr('alpha')
call pushreal(alpha)
call test

no_of_args = 0
call pushstr('call')
call pushstr('brcetype')
C ACTIVATE BRACE_TYPE RULE IN PROLOG
call test

call cc('u', strval(1l),BRCTYP)

ENDIF
C
C DETERMINE IF BRACING IS NEEDED
C

IF(IOPT.EQ.5) THEN
no_of_args = 0

call pushstr('assert')
call pushstr('toleranc')
tol = 100.0

call pushreal(tol)

call test

nho_of_args = 0

call pushstr('assert')
call pushstr('xnl')
call pushreal (hdist)
call test

no_of_args = 0

cnll pushstr('assert')
call pushstr('dist')
call pushreal(tdist)
call teest

ho_of_args = 0
call pusghstr('call')
call pushstr('bracing')
C ACTIVATE BRACING RULE IN PROLOG
call test

Page 43

aaan

aO0aAan

¢all ce('u', strval(l),CHBRAC)
read(strval(2),'(F8.2)')RATIO
ENDIF

DETERMINE NODES IN A TRIANGLE

IF(IOPT.EQ.6) THEN

do 1 = 1, ntotsp

no_of_args = O

call pushstr('assert')

call pushstr('elemntno')
call pushreal (smemno(i))
call pushreal(xs(1))
call pushreal(ye(i))
call pushreal(xe(i))
call pushreal(ye(i))
call test

end do

no_of_args = O

call pushstr('call')

call pushstr('findtri')

ACTIVATE FIND_TRIANGLE RULE IN PROLOG

call test
ENDIF

WRITE EXPLANATION OF CHOICES
IF(IOPT.EQ.8) THEN
no_of_args = 0

call pushstr('call')
call pushstr('explain')

ACTIVATE EXPLANATION RULE IN PROLOG

call test
ENDIF
RETURN
END

subroutine cc(code, fromstr, tostr)

character¥*l code
character*(*) fromgtr, tostr

integer tolen, 1, acode, zcode,

acode = ichar(‘ta‘)
zcode = ichar('z')
bigacode = ichar('A')
bigzcode = 1cha%('z')
tolen = len(tostr)

do 1 = 1, tolen
tostr(i:41) = ' !

end do

Page 44

ORIGINAL. 1 L5
OE POOR QUALITY

bigacode, bigzcode

1000

-Y-,pﬂ -

ORIGMNAIL 7717
CF FCOR QUALIT’Bﬂ

(-“4

if (code .eq. 'u' .or, code ,eq, 'U') then

do 1 = 1, len(fromstr)
if (1 .gt. tolen) goto 1000
1f (ichar(frometr(i:1i)) .ge. acode
.and. (ichar(fromstr(i:1i)) .le. zcode))then
togtr(i:1) = char(ichar(fromstr(i:i)) - 32)
else
tostr(i:1) = fromstr(i:1)
end 1if
end do
end 1if

if (code .eq. 'l' .or. code .eq. 'L') then
do 1 = 1, len(fromstr)
if (1 .gt. tolen) goto 1000
if (ichar(fromstr(i:i)) .ge. bigacode
.and. ichar(fromstr(i:1)) .le. bigzcode)then
togtr(i:1i) = char(ichar(fromstr(i:i1)) + 32)
else
tostr(i:1) = fromstr(i:i)
enda 1if
end do
ena if
return
end

SUBROUTINE pushint(iarg)

implicit none

integer alfalength, maxargs

PARAMETER (alfalength = 8, maxargs = 25)

INTEGER intval(maxargs), larg, no_of_args
character*l argtype(maxargs)

common /fpcom2/ argtype

common no_of_args

common /fpcomi/ intval

no_of__args = no_of_args + 1
intval(no_of_args) = iarg
argtype(no_of_args) = *'1°
RETURN

END

SUBROUTINE pushreal(rarg)
implicit none
PARAMETER (alfalength = 8, maxargs = 25)

REAL rarg, realval{(maxargs)

INTEGER no_of_arge

character*1l argtype(maxargs)
character*(alfalength) strval (maxargs)
common /fpcoms,/ strval

Page U5

common /fpcom2/ argtype
common no_of_args
common /fpcomr/ realval

no_of_arge = no_of_args + 1

reslval(no_of_args) = rarg

read(strval(no_of_args), '(F8.2)"')rarg
argtype(no_of_args) = 's' ! reals get passed as strings
RETURN

END

SUBROUTINE pushstr(sarg)

implicit none

integer alfalength, maxargs

PARAMETER (alfalength = 8, maxargs = 25)

character* (%) garg
character*(alfalength) strng

INTEGER no_of__args

character¥*l argtype(maxargs)
common /fpcom2/ argtype
common ho_of_args
character*(alfalength) strval (maxargs)
common /fpcoms/ strval

strng = sarg

no_of__args = no_of_args + 1
strval(no_of_args) = strng
argtype(no_of_args) = 's'
RETURN

END

Page U6

102

100

CRIT "~ oien

OF

COR QUALITY

o

Appendix 3

Implementation of Real Arithmetic

SUBROUTINE IFACE

implicit none
integer alfalength, maxargs
PARAMETER (alfalength = 8, maxargs = 10)

CHARACTER*(alfalength) strval (maxargs)
INTEGER intval (maxargs)

REAL realval (maxargs)

character*l argtype(maxargs)

integer no_of_args ! for sharing with the
common no_of_args ! stacking routines only
integer 1

real rl, r2

common /fpcomi,/ intval
common /fpcomr/ realval
common /fpcoms,/ strval
COMMON /fpcom2/ argtype

no_of_sargs = maxargs
DO i=1,maxargs
IF (argtype(i) .eq. ' ') THEN
no_of__args = 1 - 1
goto 102
END IF
END DO
continue ! loop exit target
PRINT *, 'iface: no_of_args =',no_of_args

We expect the first arg to be a command code

goto (100,200, 300,400,500,600),1intval (1)
read(strval(2), '(F8.2)'")ra1

read(strval(3), '(F8.2)')r2

print ¥, ' ri = ',ri, ' pr2 = ', r2
IF (r1 .gt. r2) THEN
strval(l) = 'gt°'
ELSE IF (rl1 .eq. r2) THEN
strval(l) = ‘'eq'
ELSE IF (rl1 .l1t. r2) THEN
strval(l) = '"1t'
ELSE IF (ri1 .le. r2) THEN
strval(l) = ‘'le’

Page U7

200

O

300

4oo

500

600

ELSE IF (rl1 .ge. r2) THEN
strval(l) = 'ge'
else
print *, ' %%k COMMAND CODE 2:
FEND IF
no_of_args
argtype(1l)
goto 3000

1
1g

read(strval(2),'(F8.2)")r1

read(strval(3), '(F8.2)")r2

print ¥, * r1 = ',ri1, ' pr2 = ',
write(strval(1l), '(F8.2)')ri+r2
no_of_args = 1
argtype(1) = 's'

print *,°* ! ! skip a line
goto 3000

read(strval(2),'(F8.2)"')r1
read(strval(3), '(F8.2)')r2
write(strval(1l),'(F8.2)')rl1-r2

no_of_args = 1
argtype(l) = 'sg'
print *,°' ! ! skip a line

goto 3000

read(strval(2),'(F8.2)")r1
read(strval(3), '(F8.2)"')r2
write(strval(1), '(F8.2)')ri*pr2
no_of_args = 1
argtype(1l) 's'
print *,°' ! ! skip a line
goto 3000

read(strval(2),'(F8.2)"'")r1
read(strval(3),'(F8.2)"'")r2
write(strval(1l),'(F8.2)"')ri/r2

no_of_args = 1
argtype(l) = 's’
print *,°' ! ! s8kip a line

goto 3000

read(strval(2), '(F8.2)")r1
write(strval(1), '(F8.2)')abs(rl)
no_of_args = 1
argtype(1) = 's'
print *,°' ! skip a l1line
goto 3000

Page U8

ARGS NOT ORDEFRED'

r2,

sum

’

v

rl+r2

3000 do 1~ no_of_arga+l, maxarga
argtype(i) = ' !
end do

end

Page U9

ORIGINAL PAGE IS
OF POOR QUALITY

N’\S’\ Report Documentation Page

1. Hoport No 2. Government Accession No. 3. Recipient’s Catalog No.
NASA CR-178393

A4, Tle and Subtitle o ' T 5. Repbrt Date

Implementing Embedded Artificial Intelligence March 1988
Rules Within Algorithmic Programming Languages

3 bérforming Organization Code

/- Authorts) - & Porforming Organisation Report No.

Stefan Feyock

[10. Work Unit No.

9 Paorforming Orgarzation Name and Address o 506-43- 41-01
1. Contract or Grant No.
VAIR, Inc.
126 Kingsport Drive NAST-18002
Will 1amsbur‘g 4 VA 23]85 113, Type of Report ‘and Period Covered
12, Sponsoring Agency Name and Address -

. . - . Contractor Report
National Aeronautics and Space Administration P

s ing Agency Cod
Langley Research Center ponsonng Agency ~ode

Hampton, VA 23665-5225

(52}

3. Supplementary Notes

lLangley Technical Monitor: James L. Rogers

Most integrations of Artificial Intelligence (AI) capab111t1es with non- AI
(usually FORTRAN-based) application programs require the Tatter to execute
separately to run as a subprogram or, at best, as a coroutine, of the Al system. In
many cases, this organization is unacceptable; instead, the requirement is for an

Al facility that runs in embedded mode; i.e., is called as subprogram by the
application program. This paper describes the design and implementation of a
Proloy-based Al capability that can be invoked in embedded mode. The significance
of this system is twofold: (1) Provision of Prolog-based symbol-manipulation and
deduction facilities makes a powerful symbolic reasoning mechanism available to
applications programs written in non-Al languages. (2) The power of the deductive
and non-procedural descriptive capabilities of Prolog, which allow the user to
describe the problem to be solved, rather than the solution, is to a large extent
vitiated by the absence of the standard control structures provided by other
lanquages. Embedding invocations of Prolog rule bases in programs written in non-Al
lanquages makes it possible to put Prolog calls inside DO loops and similar useful
control constructs. The resulting merger of non-Al and AI 1anguages thus results
in a symbiotic system in which the advantages of both programm1ng systems are re-
tained, and their deficiencies 1arge1y-remﬂ :

1/ Koy Waonrds {Suggested by Author(s}))

16. Abstiact

1§’eD|stnbuuon Statement

Knowledge base

Prolog

Algorithmic language
Artificial Intelligence

Unclassified - Unlimited
Subject Category 61

Unclassified Unclassified 50 AO3

19. Socunty Classit. {of this report) 20. Sv(‘um‘y Classif. (of this page) - ~‘IVZLVNO.Of pragreshi [ﬁj;ice')

NASA FORM 1826 0OCT 86

